
The relation between the positional specific heat and the static relaxation length: application to

supercooled liquids

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys.: Condens. Matter 17 S1275

(http://iopscience.iop.org/0953-8984/17/14/017)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 20:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/17/14
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 17 (2005) S1275–S1285 doi:10.1088/0953-8984/17/14/017

The relation between the positional specific heat and
the static relaxation length: application to supercooled
liquids

S Davatolhagh

Department of Physics, College of Sciences, Shiraz University, Shiraz 71454, Iran

Received 5 September 2004, in final form 17 November 2004
Published 24 March 2005
Online at stacks.iop.org/JPhysCM/17/S1275

Abstract
A general identification of the positional specific heat as the thermodynamic
response function associated with the static relaxation length is proposed,
and a phenomenological description for the thermal dependence of the static
relaxation length in supercooled liquids is presented. Accordingly, through a
phenomenological determination of the positional specific heat of supercooled
liquids, we arrive at the thermal variation of the static relaxation length ξ , which
is found to vary in accordance with ξ ∼ (T − T0)

−ν in the quasi-equilibrium
supercooled temperature regime, where T0 is the Vogel–Fulcher temperature
and exponent ν equals unity. This result to a certain degree agrees with that
obtained from mean field theory of the random-first-order transition, which
suggests a power law temperature variation for ξ with an apparent divergence
at T0. However, the phenomenological exponent ν = 1 is higher than the
corresponding mean field estimate (becoming exact in infinite dimensions),
and in perfect agreement with the relaxation length exponent as obtained from
numerical simulations of the same models of structural glass in three spatial
dimensions.

1. Introduction

The deepest and most interesting unsolved problem in the theory of solids is probably that of
the theory and the nature of glass and the glass transition [1]. One of the most striking features
of the typical supercooled liquid is that its relaxation time or viscosity η changes by several
decades on changing the temperature by a few tens of degrees. All available data for viscosity
fall between Arrhenius and highly non-Arrhenius extremes, designated as ‘strong’ and ‘fragile’,
respectively [2]. The latter is characterized by a highly temperature-dependenteffective energy
barrier against the viscous flow; i.e., a temperature-dependent energy barrier Eeff appears in
η = η0 exp(β Eeff), where η0 is a temperature-independent but species-dependent parameter
of the order of 10−2–103 P, β = 1/kBT , and kB is the Boltzmann constant. The temperature
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variation of the viscosity for fragile supercooled liquids is described accurately over a wide
range of temperatures by the Vogel–Fulcher empirical equation [3]:

η = η0 exp

(
A

T − T0

)
. (1)

The apparent divergence temperature T0 appearing in equation (1) is called the Vogel–Fulcher
temperature and is often found to be very close to the Kauzmann temperature TK [4], where the
configurational entropy of the liquid extrapolates to zero [5]. This well known experimental
fact, T0 ≈ TK, is indeed a matter of considerable interest as it seems to suggest that the
ideal glass transition temperatures observed dynamically and thermodynamically must have a
common physical origin [6]. It should also be pointed out that in addition to non-Arrhenius
variation of the viscosity with the temperature in the supercooled temperature regime, fragile
liquids are also characterized by a distinct jump in the second-order thermodynamic functions
such as the specific heat Cp, the isothermal compressibility κT , and the thermal expansion
coefficient α at the laboratory or calorimetric glass temperature Tg, where Tg > T0.

Furthermore, fragile supercooled liquids are also distinguished by a highly non-
exponential relaxation response as they approach equilibrium when perturbed. Often
the Kohlrausch–Williams–Watts (KWW) [7] or stretched exponential function is used to
characterize the relaxation response of fragile liquids φ(t) = exp[−(t/τ)β], where β is
the non-exponentiality parameter such that 0 < β < 1, τ is a relaxation time, and both
are found to be temperature dependent. The above relaxation response typical of fragile
liquids is well explained in terms of the existence of dynamically heterogeneous regions
in the supercooled liquid such that the relaxation in a given region is exponential but the
average relaxation time τ varies with a broad distribution among regions [8]. This dynamical
heterogeneity of the supercooled liquids has been further confirmed by recent numerical [9] and
experimental research [10], which confirmed the presence of such regions with characteristic
lengths spanning hundreds of molecules. The above numerical and experimental confirmations
of the dynamical heterogeneity of the supercooled glass forming liquids lend further support
to the notion of cooperatively rearranging regions (CRRs) in a supercooled liquid [11].

There are several indications that the viscosity, and the various other structural relaxation
times of a supercooled liquid, must be correlated with the average size of a CRR, which is a
concept dating back to the considerations of cooperative relaxation by the Adam and Gibbs [12].
In their approach the increase of the effective potential energy barrier Eeff = z	µ, with 	µ

being largely the potential energy barrier against rearranging a single molecule in a cluster
composed of z molecules, is due to an increase in the cluster size z as the temperature is lowered.
This cooperativity concept requires a characteristic static length ξ characterizing the average
linear size of a CRR. Evidently, an incremental increase in ξ of the order of a few nanometres is
magnified in an exponentially large (macroscopic) relaxation time as a consequence of which
the supercooled liquid falls out of equilibrium on experimental timescales, hence making any
underlying static thermodynamic phase transition unreachable under laboratory conditions.
From a theoretical point of view, the mean field theory of the random-first-order transition
(or discontinuous spin glass) that exhibits qualitative features in tandem with the structural
glass phenomenology suggests an approximate power law temperature dependence for the
static relaxation length such that ξ ∼ (T − T0)

−ν , where the apparent divergence temperature
T0 is the Vogel–Fulcher temperature, and the exponent ν = 2/d or ν = 2/3 in d = 3
dimensions [13, 14]. There has been an empirical attempt to investigate the temperature
variation of ξ , the results of which are more or less consistent with the above-proposed power
law [15]. The results reported for the fragile liquid o-terphenyl are ν = 0.69 ± 0.06 with
T0 = 203±6 K. But the relevance to the static relaxation length of the experimental procedure
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adopted by [15], and the various interpretations of the experimental data, have been called
into question by the subsequent experimental investigations [16]. More recently, numerical
simulations in three dimensions of the microscopic models that exhibit a random-first-order
transition in the mean field, such as the p-spin glasses [17] and the frustrated Ising lattice gas
model [18], have been found to favour a static relaxation length exponent ν = 1.

In an attempt to clarify some of the discrepancies concerning the precise nature of the
thermal dependence of the static relaxation length ξ of the fragile supercooled liquids, as
alluded to in the above discussion, we adopt a phenomenological approach to obtain the
temperature variation of ξ . The main ingredients in this semi-empirical approach are:

(i) The temperature-dependent potential energy barrier Eeff against the viscous flow that is
embodied in the Vogel–Fulcher equation for the viscosity.

(ii) The thermodynamic response function bond susceptibility χb as applied here in the case
of liquids, which is to be regarded as the response function measure of the tendency for
bond ordering or correlated relaxation of bonds into their low-lying energy states, brought
about by the rearrangement of a CRR.

Bond susceptibility was introduced earlier in the context of a diluted-bond model system
relevant to the problem of the glass transition, the thermodynamic properties of which were
investigated by means of Monte Carlo simulation [19]. Here, the very concept underlying bond
susceptibility, i.e., correlated ordering or relaxation of bonds where intermolecular bonds are
treated as distinct objects possessing internal degrees of freedom or energy states, is generalized
and applied to the case of laboratory liquids. This approach paves the way for identification of
the interaction or positional specific heat Ci as the thermodynamic response function associated
with the characteristic length of relaxation ξ . Subsequently, a semi-empirical determination
of the positional specific heat Ci for the general class of fragile liquids is used to arrive at the
thermal variation of the static relaxation length ξ that, by definition, gives the average linear
size of a CRR in the liquid.

The rest of this paper is organized as follows. In section 2 we describe the relevant
conceptual and theoretical background concerning the various competing ordering processes
in a liquid, and give a definition for the bond susceptibility χb as a response function
measure of the tendency for correlated bond ordering. Section 3 contains the derivations
of the various relationships among thermodynamic and correlation functions relevant to the
present discussion. As will become evident in section 3.1, there exists a relationship of
the form χb = T Ci relating the bond susceptibility of a liquid in the canonical ensemble
with the interaction or positional part of the specific heat. Furthermore, in section 3.2
bond susceptibility is shown to be intimately related to the static relaxation length such that
essentially χb ∼ βξ2. These results essentially indicate an association of the positional specific
heat Ci as a thermodynamic response function with the characteristic length of relaxation ξ ,
which is a novel concept brought to light in section 3.3. This association of Ci and ξ is then
applied in section 4 to develop a phenomenological description for the temperature variation of
the static relaxation length in fragile supercooled liquids. Concluding remarks and a summary
of the main results are presented in section 5.

2. Relevant background

2.1. Two-order-parameter description of liquids

Attempts have been made to incorporate frustration arising from the local ordering of bonds
in a supercooled liquid through the introduction of a local order parameter characterizing the
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energetically favoured local arrangements of the liquid molecules,which are not consistent with
the crystallographic symmetry favoured by the density ordering or crystallization. In this two-
order-parameter description of the liquids due to Tanaka [20, 21], the frustration arises from
competition between density ordering and local bond ordering,explaining why some molecules
crystallize easily without vitrification, while others easily form glasses without crystallization.
The effect of density ordering is to maximize the density of molecules favouring a close-
packed crystallographic symmetry, while local bond ordering tends to improve the quality of
bonds by reducing the bond energies at the local level. This model therefore emphasizes that
introduction of a bond order parameter, in addition to the density ρ(r), is necessary in order
to have a complete thermodynamic description of the liquid state, and, in particular, of the
supercooled glass forming liquids. The energetically favoured local structures, such as the
icosahedral arrangements favoured by the spherical molecules [22], are taken to be randomly
distributed in a sea of normal liquid. It is further argued that the local structures with finite
but long lifetimes act as impurities and produce the effects of fluctuating interactions and
symmetry-breaking random fields against the density ordering in a liquid, in much the same
way as magnetic impurities frustrate magnetic ordering in a spin glass system [23]. In this
two-order-parameter description of the liquids the ‘bond order parameter’ S(r) is taken to be
defined by the local concentration of the energetically favoured structures, and the average
concentration of local structures S̄ is estimated to be given by S̄ ∼ gS/gρ exp[β(Eρ − ES)],
where Ei and gi are the energy level and the number of degenerate states of the i -type structure.
(i = ρ corresponds to the normal liquid while i = S corresponds to the energetically favoured
local structures.) Thus, the active bond concentration S(r) is taken to have a frustrating
influence on crystallization at the local level, and each molecule intrinsically has the cause of
disorder and random fields against the density ordering.

2.2. Bond susceptibility

Bond susceptibility is defined as a response function measure of the tendency for bond ordering
or correlated relaxation of bonds into their low-lying energy states, brought about by the
rearrangement of a molecular group/CRR. Bond susceptibility, apart from normalization, is
defined by

χb =
(

∂〈Mb〉
∂ Hb

)
T,Hb=0

(2)

where 〈Mb〉 denotes the thermally averaged bond energy order parameter characterizing the
configurational energy of the system (more of which in section 3), and the average field Hb

that is referred to as the bond ordering field is a self-generated molecular field favouring the
local ordering of bonds and against the density ordering or crystallization [19]. The above
physical quantities are introduced in order to be consistent with the above two-order-parameter
description of the liquids that recognizes two competing ordering processes in a liquid, namely,
global density ordering that results in crystallization,and local bond ordering that is responsible
for the glass transition. Bond susceptibility is further expressed in terms of the equilibrium
fluctuations of the bond energy order parameter

χb = Nβ〈δm2
b〉, (3)

where 〈mb〉 = 〈Mb〉/N is the normalized bond energy order parameter characterizing the
configurational energy, δmb = (mb − 〈mb〉) is the corresponding fluctuation, N is the
system size, and angular braces denote the usual thermal average. Equations (2) and (3)
for bond susceptibility can be readily derived from the thermodynamic relation dG =
−S dT − 〈Mb〉 dHb, which gives the change in free energy G(T, Hb) of a system undergoing
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bond ordering as opposed to density ordering or crystallization [19]. Evidently, the bond
ordering field Hb is the thermodynamic conjugate field that couples to the bond energy order
parameter 〈Mb〉 (which characterizes the configurational energy), and can be regarded as the
average concentration of energetically favoured local structures S̄.

3. Relations among thermodynamic and correlation functions

In this section the very concept underlying bond susceptibility, i.e., bond ordering or correlated
relaxation of bonds, is generalized and applied to the case of laboratory liquids where we treat
intermolecular bonds as distinct objects possessing internal degrees of freedom or energy
states. The line of reasoning presented culminates in the identification of positional specific
heat as the thermodynamic response function associated with the static relaxation length.

3.1. Bond susceptibility and positional specific heat

The bond energy order parameter 〈mb〉 is defined as a measure of the bond order prevailing
in a system, and characterizes the configurational energy [19]. By definition, it assumes
large values when intermolecular bonds are in their low-lying energy states, as for a bond
ordered low-temperature phase such as the glass, and is negligible when bonds are distributed
uniformly among all possible energy states, which is indeed the case when the thermal energy
is far in excess of the typical intermolecular binding energy. As a result, the bond energy order
parameter of a liquid in the canonical (NV T ) ensemble can be simply defined in terms of the
configurational energy of the liquid. With �(r1, r2, . . . , rN ) denoting the potential energy
function of a liquid composed of N molecules, the bond energy order parameter for this system
is defined by

〈mb〉 = −〈�〉/N. (4)

Equation (4) satisfies all that is required of a bond energy order parameter. On substituting
this expression into the fluctuation-dissipation equation (3), for the liquid in question we have

χb = β
〈
δ�2〉 /N (5)

where δ� = (�−〈�〉). Another response function of interest and of immense relevance to the
problem of the glass transition is the specific heat. For a liquid in a canonical ensemble it may
be expressed as a sum of two terms: a kinetic part Ck; and an interaction or positional part Ci.
The above distinction follows from the fact that the liquid Hamiltonian consists of two distinct
parts: a kinetic energy part

∑N
i=1 p2

i /2mi covering the degrees of freedom associated with the
molecular momenta; and a potential energy part�(r1, r2, . . . , rN ) containing the contributions
to internal energy from interactions or positional degrees of freedom. The positional part of
the specific heat is in fact the temperature rate of change of configurational energy:

Ci = 1

N

∂〈�〉
∂T

. (6)

It can be readily shown that an expression for the positional specific heat in terms of the
equilibrium fluctuations of the configurational energy is given by

Ci/kB = β2 〈
δ�2〉 /N. (7)

On comparing equation (5) for the bond susceptibility of a liquid in the canonical ensemble
with equation (7) for the positional part of the specific heat, we arrive at the following simple
result:

χb = T Ci. (8)



S1280 S Davatolhagh

It becomes evident from equation (8) that the bond susceptibility of a liquid in the canonical
ensemble, characterizing the tendency for bond ordering or correlated relaxation of bonds, can
be simply interpreted as the response function positional specific heat.

It is noteworthy that the result expressed by equation (8) is readily verifiable for certain
lattice models such as the two-dimensional Ising model [24], and some impurity variants
thereof [25], where analytic solutions are available. In particular, the four-spin correlation
functions w(r) = 〈σ1σ2σrσr+1〉 − 〈σ1σ2〉〈σr σr+1〉 that can also be interpreted as two-bond
energy correlation functions, with σ1σ2 characterizing the energy of a reference bond while
σrσr+1 characterizes that of a bond in a different location in the system, when summed
over r or all distinct pairs of bonds, essentially produce the specific heat which is entirely
interaction or positional for the aforesaid lattice models:

∑
r w(r) = ∂ε/∂β − 1 + ε2, where

ε = 〈σ1σ2〉 [25]. This apparent connection between bond susceptibility and two-bond energy
correlation functions will be used extensively next to establish a quantitative relationship
between the bond susceptibility and static relaxation length.

3.2. Bond susceptibility and the static relaxation length

In the context of the bond ordering picture, a CRR can be viewed as a correlated region
of relaxing bonds. Thus, the correlation length of such a region of bonds can be regarded
as the characteristic length of (cooperative) relaxation ξ . Following equation (3), the bond
susceptibility of a liquid in the NV T ensemble is expressed as

χb = β

V

[〈M2
b 〉 − 〈Mb〉2

]
(9)

where V is the liquid volume and Mb is the extensive bond energy parameter whose thermal
average is the bond energy order parameter characterizing the configurational energy. For
short-range molecular interactions that is almost always the case; Mb can be expressed in terms
of the volume integral of a microscopic bond energy density mb(r) = ∑Nb

i=1 mbiδ(r − ri ),
where mbi characterizes the energy of the i th bond and Nb denotes the total number of bonds
in the system. Thus, for a d-dimensional system we can write

Mb =
∫

ddr mb(r) (10)

where the integral is evaluated over the liquid volume and mb(r) characterizes the energy of
an intermolecular bond situated at r. On substituting this expression into equation (9) and
simplifying, we have

χb = β

∫
ddr [〈mb(r) mb(0)〉 − 〈mb(r)〉 〈mb(0)〉] . (11)

Clearly, the quantity in the square brackets of equation (11) is the two-bond energy correlation
function Gb(r) ≡ 〈δmb(r) δmb(0)〉, quantifying the spatial correlation of the fluctuations of
the bond energy order parameter. For an isotropic system, Gb(r) = Gb(r). Furthermore, if
we take the spatial variation of Gb(r) to be of the form [26, 27]

Gb(r) ∼ g(r/ξ)

rd−2
, (12)

where ξ is a characteristic length beyond which the correlation function rapidly vanishes, the
bond susceptibility of a liquid and the characteristic length of relaxation are related by

χb ∼ β

∫ ξ

dr
rd−1

rd−2
= βξ2/2. (13)
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We must point out that in a previous work the functional form of equation (12) has been
used for a similar spatial correlation function in the context of a defect theory of relaxation
to successfully recover the generalized Vogel–Fulcher equation for the viscosity [26]. There
the relaxation is considered to be brought about by the movements of mobile defects whose
spatial correlation is governed by equation (12). In the context of the bond ordering picture,
equation (12) is applied to the two-bond energy correlation function Gb(r) as the structural
relaxation is now considered to be a consequence of correlated relaxation of bonds within a
region whose average linear size gives the static relaxation length ξ .

We note that, as a corollary of the result expressed by equation (13), a possible diverging
bond susceptibility χb at some finite temperature T ∗ must necessarily imply a diverging static
relaxation length ξ at the same temperature. That is, if the variation with temperature of
the bond susceptibility for a system of interest is found to be a power law of the form
χb ∼ (T − T ∗)−γb , then the temperature variation of the relaxation length must also be
governed by a similar power law, ξ ∼ (T − T ∗)−ν , such that the exponents are related by the
scaling relation

γb = 2ν. (14)

We must emphasize that the above result is consistent with a standard result of statistical
mechanics, namely, α = (2 − η′)ν, where α is the specific heat exponent and η′ is the power
law decay exponent of the energy–energy correlation function [27]. In our treatment leading
to equation (14), however, we have taken η′ = 0 for a supercooled liquid system, which
is corroborated by the numerical simulations of various models of structural glass in three
dimensions [17, 18]. One can further identify γb with α, as expected. In an application to
disordered systems, the results established here will be used in section 4 in a phenomenological
description of the static relaxation length of the fragile liquids.

3.3. Positional specific heat and the static relaxation length

It has now become evident that the bond susceptibility of a liquid can be expressed as χb = T Ci,
where Ci is that part of the specific heat containing contributions from interactions or positional
degrees of freedom. Furthermore, the bond susceptibility χb or indeed Ci is shown to be
intimately related to the static relaxation length ξ such that essentially χb ∼ Ci ∼ ξ2. With
their thermal behaviours so closely correlated, we therefore propose the identification of the
positional specific heat Ci as the thermodynamic response function associated with the static
relaxation length ξ . Hence, we must further emphasize the significance of the role played by
the specific heat, and, in particular, the interaction or positional part of it, in the problem of
the glass transition. Unfortunately not enough is known about the precise behaviour of the
specific heat near T0 and much less about the interaction part of it, from an experimental point
of view, as the supercooled liquid falls out of equilibrium on experimental timescales at the
kinetic glass temperature Tg for the reasons pointed out in the introduction. It is generally
believed that the excess specific heat over the crystal value 	Cp, which is regarded as being
due to a subset of the positional degrees of freedom, involving transitions between inherent
structures (metabasins) of the potential energy hypersurface, rises with decreasing temperature
in the supercooled temperature regime, and a hyperbolic form 	Cp ∝ 1/T has been assumed
in conjunction with the Adam–Gibbs equation for the viscosity to recover the Vogel–Fulcher
equation [28]. However, a drastically different 	Cp has also been used to accurately account
for the viscosity of silicate glasses [29]. Hence, in the forthcoming section where the preceding
results will be applied in the case of fragile systems, a semi-empirical approach is adopted to
estimate the positional specific heat of fragile supercooled liquids.
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4. Application to supercooled liquids

In this section we present a phenomenological description for the thermal dependence of the
static relaxation length for the general class of fragile liquids, in an attempt to clarify some of
the discrepancies that were referred to in the introduction. As it turns out, the result obtained via
this phenomenological approach to a certain degree agrees with that obtained from mean field
theory of random-first-order transitions, also referred to in section 1, which suggests a power
law temperature variation for the static relaxation length in the quasi-equilibrium supercooled
temperature regime with an apparent divergence at the Vogel–Fulcher temperature T0 [13].

The positional specific heat Ci is the temperature rate of change of the configurational
energy (equation (6)). For the case of fragile supercooled liquids where the Eeff of equation (1)
is to be largely interpreted as a temperature-dependent ‘potential energy barrier’ against the
viscous flow [12, 30], one can consider a relationship of the form

〈φ〉(T ) ∼ −Eeff(T ) (15)

where 〈φ〉 = 〈�〉/N is the normalized configurational energy. Equation (15) expresses the
average depths or minima of the potential energy hypersurface explored by the liquid at each
temperature in terms of the height of the effective potential energy barrier against the viscous
flow. It should also be mentioned that in the present analysis it is only the temperature rate
of change of the above quantities that is of interest. The above equation simply indicates that
the higher the energy barrier Eeff , the lower the minima and consequently the configurational
energy 〈φ〉. Equation (15) is also consistent with a representation in the potential energy
landscape of a supercooled liquid, according to which a liquid is progressively confined to the
deeper minima of the potential energy hypersurface with decreasing temperature, whereby it
becomes more viscous due to an increased potential energy barrier Eeff against the viscous
flow [30], or, alternatively, a reduction in the configurational entropy [31]. Although clearly
this interpretation of the dynamics of supercooled liquids in terms of increasing barrier heights
with decreasing temperature is not the only one found in the current literature [32], it is the one
that we deem appropriate for the purposes of the present discussion. Hence, the interaction or
positional part of the specific heat of the fragile liquids can be approximated by

Ci = −∂ Eeff

∂T
. (16)

Using the effective potential energy barrier implied by the Vogel–Fulcher equation (1), i.e.,
Eeff = AkBT/(T − T0), we obtain

χb = T Ci = AkBT T0

(T − T0)2
. (17)

Equation (17) implies a power law temperature variation of the form χb ∼ Ci ∼ (T − T0)
−2

for the bond susceptibility as well as positional specific heat of the fragile supercooled liquids
with an exponent γb = 2. From the scaling relation equation (14), the exponent ν governing
the thermal variation of the static relaxation length of the fragile supercooled liquids is thus
given by ν = γb/2 = 1. Hence, with the effective potential energy barrier embodied in the
standard form of the Vogel–Fulcher equation, we obtain

ξ ∼ (T − T0)
−1 (18)

where T0 is the Vogel–Fulcher temperature and exponent ν is equal to unity.
One may repeat the same analysis, this time using the generalized form of the Vogel–

Fulcher equation:

η = η0 exp

(
B

(T − T0)γ

)
, (19)
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with the identification Eeff = BkBT/(T − T0)
γ , where B and γ are constant parameters.

The special case of γ = 1 results in the standard form of the Vogel–Fulcher equation being
recovered; however, different values for parameter γ can also be found in the literature [26].
The following is the result obtained with this rather generalized form of Eeff that includes γ

as an extra parameter:

χb = T Ci = BkBT

(T − T0)γ +1

[
γ T − (T − T0)

]
. (20)

In the limit T → T0, equation (20) gives

χb(T → T0) ∼ γ BkBT 2
0

(T − T0)γ +1
. (21)

Equation (21) implies χb ∼ Ci ∼ (T − T0)
−(γ +1), and from equation (14), the characteristic

length exponent is now given by ν = (1 + γ )/2. Evidently an accurate experimental
measurement of the parameter γ appearing in the generalized Vogel–Fulcher equation is
essential for a precise determination of the exponentν through the phenomenological procedure
presented here.

A discussion of the observed difference between the phenomenological (ν = 1) and mean
field value (ν = 2/3) of the static relaxation length exponent of the fragile liquids appears to be
in order at this stage. This difference can be attributed to the mean field nature of the theory of
the random-first-order transition that becomes exact in infinite dimensions, and is believed to
have an associated upper critical dimension du = 6, which is significantly higher than the d = 3
space dimensions of supercooled systems. One therefore expects the mean field estimate of the
relaxation length exponent to become increasingly accurate as the number of space dimensions
approaches the upper critical value of six. Thus, it appears that the mean field theory of the
random-first-order transition, which presents qualitative features analogous with the structural
glass phenomenology, provides a lower-bound estimate of the static relaxation length exponent
of a supercooled liquid. Indeed, there are other instances where mean field theories return lower
estimates of correlation length exponents. A prominent example is the mean field theory of
the continuous phase transitions (including the Ising model) that, by hyperscaling, has an
associated upper critical dimension of four, which returns one half for the correlation length
exponent, which is again exceeded by the exact two-dimensional value (unity), and reliable
numerical estimates (0.63) for the corresponding three-dimensional system. Nevertheless, it
is a matter of considerable interest that the phenomenological value of the static relaxation
length exponent, ν = 1, is precisely the value obtained from the three-dimensional numerical
simulations of the microscopic models that exhibit a random-first-order transition in the mean
field limit, such as the p-spin glasses [17] and the frustrated Ising lattice gas model [18].

In this section, a simple model for configurational energy in terms of increasing barrier
heights with decreasing temperature has been used that, despite its simplicity, is applicable
to various kinds of fragile liquids with predominantly ionic, Van der Waals, hydrogen, or
covalent bonding. It would also be interesting to look at certain specific models such as the
Rosenfeld–Tarazona relation for the Lennard-Jones liquid [33], or indeed any model that can
be used to distinguish between positional and kinetic contributions to the specific heat in the
context of the present work [34]. That effort is deferred to further work to be presented in due
course.

5. Summary

For a liquid in the canonical ensemble it is shown that the bond susceptibility and interaction
or positional part of the specific heat are related by χb = T Ci. Furthermore, the bond
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susceptibility and static relaxation length are found to vary as χb ∼ βξ2. These relationships
essentially indicate the identification of the positional specific heat as the thermodynamic
response function associated with the characteristic length of relaxation—a proposition that
further emphasizes the significance of the role played by the positional specific heat in
the problem of the glass transition, and is likely to find further applications in the theory
of disordered systems, as applied here to the case of fragile supercooled liquids in a
phenomenological description of the thermal dependence of the static relaxation length in
those systems.

Through the phenomenological approach, the temperature variation of the characteristic
length of relaxation for fragile supercooled liquids is established to be governed by a power law
ξ ∼ (T − T0)

−ν , implying an apparent divergence at the Vogel–Fulcher temperature T0, which
to a certain degree agrees with the corresponding result obtained from mean field theory of the
random-first-order transition in that the apparent divergence temperature is T0 in both these
cases. However, the phenomenological exponent ν is found to be unity, which is higher than
the corresponding mean field estimate, hence favouring a stronger temperature dependence
for the static relaxation length in the supercooled temperature regime. This difference can be
attributed to the mean field nature of the theory of the random-first-order transition as discussed
above. It is indeed a matter of considerable interest that the phenomenological exponent ν = 1
is in perfect agreement with the corresponding value obtained from the three-dimensional
numerical simulations of the same models of structural glass that exhibit a random-first-order
transition in the mean field limit.
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